Dual role of Zn2+ as inhibitor and activator of fructose 1,6-bisphosphatase of rat liver.

نویسندگان

  • G A Tejwani
  • F O Pedrosa
  • S Pontremoli
  • B L Horecker
چکیده

At neutral pH, Zn2+ is a potent and specific inhibitor of rat liver fructose 1,6-bisphosphatase (EC 3.1.3.11; D-fructose-1,6-bisphosphate 1-phosphohydrolase). Inhibition by Zn2+ is uncompetitive with respect to the activating cations Mg2+ and Mn2+, and the kinetic data suggest that the enzyme possesses a distinct high-affinity binding site for Zn2+, with Ki of approximately 0.3 muM. At higher concentrations (about 10(-5) M) Zn2+, and to a lesser extent Co2+, function as activating cations. Binding studies show that the enzyme binds two equivalents of Zn2+ per subunit; one equivalent is partially displaced by Mg2+ and is presumably bound to the site for activating cations. A second equivalent binds to the high-affinity site, presumably identical to the inhibitory site. The results suggest that Zn2+ functions as an allosteric regulator, and that the commonly observed activation of fructose 1,6-bisphosphatase at neutral pH by EDTA, histidine, and other chelators is due to removal of endogenous Zn2+ by these agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fructose-1,6-bisphosphatase from rat liver. A comparison of the kinetics of the unphosphorylated enzyme and the enzyme phosphorylated by cyclic AMP-dependent protein kinase.

A purification procedure for rat hepatic fructose-1,6-bisphosphatase, described earlier, has been improved, resulting in an enzyme preparation with a neutral pH optimum and with both phosphorylatable serine residues present. The subunit Mr was 40,000. Phosphorylation in vitro with cyclic AMP-dependent protein kinase resulted in the incorporation of 1.4 mol of phosphate/mol of subunit and led to...

متن کامل

Kinetic studies on the mechanism and regulation of rabbit liver fructose-1,6-bisphosphatase.

The interaction of Mg2+, AMP, and fructose 2,6-bisphosphate with respect to rabbit liver fructose-1,6-bisphosphatase was investigated by studying initial-rate kinetics of the system at pH 9.5. A rapid-equilibrium Random Bi Bi mechanism is suggested for the rabbit liver enzyme from the kinetic data. Our kinetic findings indicate that Mg2+ and the inhibitor AMP are mutually exclusive in their bin...

متن کامل

Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production.

Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is an important regulatory enzyme of glucose metabolism. By controlling the level of fructose-2,6-bisphosphate, an allosteric activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase regulates hepatic gluco...

متن کامل

Purification and properties of liver fructose 1,6-bisphosphatase from C57BL/KsJ normal and diabetic mice.

Fructose 1,6-bisphosphatase was purified from the livers of C57BL/KsJ mice to apparent homogeneity. The enzyme was shown to be a tetramer of a subunit M, = -35,000. The purified enzyme showed maximal activity at neutral pH; high affinity for its substrate, fructose 1,6-bisphosphate; requirement for a divalent cation (M&+ or Mn2+); inhibition by AMP; susceptibility to limited proteolysis by subt...

متن کامل

Fructose-bisphosphatase as a substrate of cyclic AMP-dependent protein kinase.

We have tested rat liver fructose-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) and three other gluconeogenic fructose-bisphosphatases as substrates for the catalytic subunit of cyclic AMP-dependent protein kinase. In contrast to the rat liver enzyme, homogeneous preparations of mouse liver, rabbit liver, and pig kidney fructose-bisphosphatase could not be phospho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 73 8  شماره 

صفحات  -

تاریخ انتشار 1976